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_é ABSTRACT

In this report, we describe our work in developing medels, methodologies and simu-
lations for network optimization problems in the planning, analyzing and optimizing of
large scale (air) transportation networks with time window constrained routing and
scheduling. Qur research is motivated by certain problems encountered in the United
States military’s strategic mobility analysis, in general, and specifically in Mobility
Analysis Support System (MASS) of the USAF's Air Mobility Command (AMC).

This work is performed within the framework of Semantic Controi paradigm, a three-
layer supervisory hierarchical structure. In this context a new mathematical programming
model, called Network Optimization Mobility Analysis (NETO), for the mobility analysis
system is formulated as a pickup-delivery vehicle routing and scheduling problem with
time-window constraints (PDPTW). In order to cope with the computational complexity
inherent in the PDPTW formulation, we have developed and implemented a novel algo-
rithm called SP-CGCE (set-partitioning formulation, coiumn generation and column elim-
ination). The computational results indicate a promising and robust performance by this
solution algorithm. The problems tested/solved here involve many more nodes than simi-
lar problems previously attempted. The test results indicate that the SP-CGCE algorithm is
at least twice as fast as currently available column generation-branch and bound schemes;
this increase in speed is due to the effectiveness of the column elimination process used
after the completion of the linear programming phase to obtain integer solutions.

In particular, the focus of this report is the optimal requirement studies problem, where the
following question is addressed: “Hotw many of what types of transportation assets are necessary
to move cargo to the specified destinations, satisfying a particular desired closure schedule?”

1. INTRODUCTION

The Center for Optimization and Semantic Control at Washington University in
St. Louis has been conducting research jointly with the Air Mobility Command of the
United States Air Force with respect to the Mobility Analysis Support System. In the past,
we have solved several large-scale, time-dependent, mixed variable, uncertain and com-
plex problems encountered in aerospace and decision support domains (1-5,8,9] using the
Semantic Control paradigm (see below). The Center researchers approach the solution of
such problems using a judicious combination of classical mathematical methodologies
(mathematical programming, computational geometry, control theory, game theory,
stochastic, etc.), together with Artifical Intelligence paradigms such as Planning, Search,
Fuzzy System Theory, Neural Networks, Rule Based Systems, and Logic Programming
[8-9]. Our approach is based on the Semantic Control paradigm—a three-level hierarchical
structure (Figure 1-1) consisting of:

* an Identifier, which processes the list of requirements, known as the time-phased force

deployment data/document (TPFDDs?), and interprets the available information;

* a Goal Selector, which generates and evaiuates several plans; and _

* an Adapter, which implements the optimal pian.

For example, the Identifier module consists of neural networks for processing, pattern
recognition and optimization of TPFDDs. Once trained, neural networks identify require-
ments and consequently recommends assignment and allocation of aircraft in order to
deliver those requirements. Currently, given a requirement containing:

i) a commodity code (such as outsize, oversize, bulk, passengers),
ii) an onload-offload region, and

iii) the percent of the total requirement to be moved,

the neural network recommends the appropriate assignment and allocation of aircraft
to deliver that requirement.* The neural network module serves as a “pattern recognizer”
in order to reduce the complexdty; in addition to this, we are currently developing a “fuzzy
model” of the air transportation which incorporates leeways in the constraints and goal.

.This shouid prove very useful since several quantities such as MOG (maximum on
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Figure 1-1: A semantic control system consists of a System Identifier, a Goal Selector,
a Control System Adapter, and one or more control systems/laws.

ground) are not crisp variables. This approach admits such uncertainties as part of the
model, thus reducing labor-intensive post-optimality sensitivity analysis. These issues will
not be discussed further in this report. We refer the interested reader to [8,9]. This report
deals mainly with algorithm development and simulation of exact mathematical program-
ming and optimization methodologies (cf. (6] and [10]) for the Goal Selector module of the
Semantic Controller. More specifically our objectives in this report are:

1) reviewing existing mobility analysis models and addressing their various limitations,

2) presenting the new mobility analysis model NETO formulated as a PDPTW problem,

3) discussing our solution algorithm (SP-CGCE) and comparing its performance to
other published results,

4) providing a brief overview of the system implementation and related issues,

5) giving an example of the optimal requirements studies problem, and

6) concluding with a discussion of other relevant problems addressed by this approach
as well as related open problems.

This report is divided into six sections:

- Section 1 and subsections 1.1 through 1.3 present background information on the
strategic mobility analysis and limitations of current simulation and mathematical
models.

~ Section 2 discusses the system architecture and the components of our model NETO.

= Section 3 focuses on the mathematical formulation, algorithmic details, and perfor-
mance analysis. The mathematical model for our formulation is given in more detail
in Appendix B.

~ Section 4 presents system implementation and gives an example of the optimal
requirements studies problem.

— Section 5 discusses other related problems and defines future work.

— Section 6 concludes with a brief summary.

1.1.STRATEGIC MOBILITY ANALYSIS: BACKGROUND [7]

Various objectives of strategic mobility analysis are grouped into three broad planning
categories:
* Resource Planning: long-range deployment planning and programming.
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* Deliberate Planning: mid-range deployment planning that encompasses the develop-
ment and analysis of operational plans.

« Execution Planning: including both the short-range crisis action planning before an
engagement begins and the continuing planning and replanning as execution
proceeds.

There are two fundamental questions involved in the above planning categories as well

as in all other planning activities: )

1) How to accomplish the objectives (and to what degree) given the resources?

2) Given the objectives, what are the minimum resources required to accomplish them
and how to do so?

In particular Resource Plarming encompasses program development and related policy
research that is conducted in the planning, programming, and budgeting system (PPBS).
Although mobility studies in resource planning may presume specific theater scenarios, the
analyses are collectively meant to conduct coordinated long-range resource planning for
total forces. These studies are generally of two types: capability assessments, which deter-
mine the force closure that can be supported by a given set of lift assets, and requirements
studies, which estimate the lift assets necessary to support a given force closure.

In capability assessments (the forward problem), a strategic mobility model is used to
assess how soon a particular set of transportation assets can effect theater closure of a partic-
ular set of forces, support resource, and resupply, given the constraints of scenario and carge
priorities. Although capability assessments theoretically are one-shot uses of the model,
more runs are almost always needed to assess the implications of uncertainty. To explore
degrees of risk with a given force structure and operational objectives, the model may be
exercised numerous times with different versions of scenario assumptions.

In requirements studies (the backward problem) the following question is asked, “How
many of what types of transportation assets are necessary to move cargo to the specified
destinations, satisfying a particular desired closure schedule?” The results of the analysis
describe a set of transportation assets , or perhaps the required increments to a baseline set
of assets. Conducting this type of study with the currently available mobility models is nec-
essarily a tedious iterative process. At the Joint Staff, an important recent example of a
requirements study is the RIMS (Revised Intertheater Mobility Studies), which required over
400 MIDAS runs (Model for Intertheater Deployment by Air and Sea)} between October 1986
and April 1989.

1.2. ANALYSIS PROCESS OF THE CURRENT MOBILITY MODELS

The models that are currently being used in the defense communities (7], such as
MIDAS (Model for Intertheater Deployment by Air and Sea, a Joint Depioyment System
model, 1980), RAPIDSIM (Rapid Intertheather Deployment Simulator, 1974), TFE
(Transportation Feasibility Estimator, a Joint Operation Planning System), FLOGEN (Flow
Generator, an Air Mobility Command model), SEACOP (Strategic Sealift Contingency
Planning System, a Military Sealift Command model), MASS (Mobility Analysis Support
System, an Air Mobility Command model, 1980's), etc., all process data in a similar way.
Each model uses several inputs in the form of data files; all use similar algorithms to simu-
late the transportation system, and all produce similar outputs, e.g. delivery dates, utiliza-
tion rates, and delays/queues.

Typically, four files provide input for the simulation models: a requirement file, a
PREPO (prepositioning) file, a transportation resources file, and a scenario file. The model
then assigns cargoes to transportation assets according to certain rules, and simulates cargo
movement through the transportation system. All of the current models use the same solu-
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Figure 1-2. The Analysis Process of the Current Mobility Models

tion technique (deterministic simulation} and basically follow the same steps to arrive at a
delivery profile. A model may undergo some or all of the following analysis tasks (Figure
1-2): merge files; aggregate records (by ports, route, ships, or cargo); prioritize records; select
models (ie., air or sea for those with no chosen mode); schedule cargoes; simulate move-
ment; prepare textual output; prepare graphical output; check and correct.

As mentioned earlier, we were motivated by problems encountered in the Mobility
Analysis Support System (MASS). MASS is a family of analytical tools developed originally
by the Command Analysis Group at the headquarters, Military Airlift Command, Scott AFB,
Ilinots, from the mid-1980's to the early 1990's. The Command Analysis Group (Studies and
Analysis Flight now) is presently working under the Plans and Analysis Directorate at the
headquarters, Air Mobility Command. The MASS family consists of a variety of models to
aid in the analyses of the full spectrum of airlift operations from daily peacetime cargo
movement to full-scale global wartime movements such as Desert Shield /Storm.

MASS is a deterministic simulation model which directs aircraft through a network of
onload, enroute, offload, and recovery bases in order to deliver a set of requirements needed
to achieve some predefined scenario goal. MASS is capable of handling many diverse sce-
narios. An enroute base is an intermediate stop, normally for fuel or to change crews,
between an offload and onload base. A recovery base is visited after the offioad for fuel
and/or crew change, in order to relieve congestion at the offload base. The recovery base is
where aircraft wait to be scheduled for their next mission.

The cargo requirements (TPFDD) contain cargo information or requirements such as
onload(origin), offload(destination), available date, required delivery date, size, weight and
nature of the cargo, etc. The set of cargo requirements given by TPFDD are taken as input,
based on the availability of aircraft, airfields, parking space, crew members and routes etc.,
MASS works through the entire airlifting operation, simulating onloading, offloading,
scheduling, routing, refueling, crew changing processes, generating a multitude of step by °
step aircraft activities, cargo movement and delivery information. MASS also simulates the
impacts made by some anticipated /unanticipated changes in the airlifting system, such as
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increased number of aircraft, base closure, etc. It is an effective tool in that it offers a feasible
solution to the airlift problem; however, it does not address the backward probiem directly
nor does it guarantee an optimal solution. In subsection 1.3 we describe the limitations of
current models in more detail.

1.3. LIMITATIONS OF CURRENT MODELS _

Schark et al. ([7], pp. 39-50) from the RAND corporation provide a very comprehensive
review of strategic mobility models and analyses. The following limitations of the current
models are identified:

« All work in only one direction, accepting similar types of input data and producing

" the same general information.

e None are optimal.

Current Modeis All work in One Direction: All major current mobility models are sim-
ulations or have major simulation components. They accept data on what has to be moved
(cargoes), what is prepositioned (PREPO), what transportation assets are available, and what
the assumptions are regarding timing and available infrastructure. They then assign cargoes
to transportation assets according to specific rules and simulate their movement through the
transportation System. Finally, all produce estimates of when units are delivered into the
theater and utilization rates of the transportation assets and facilities. All existing models use
this process, regardless of the decisions and objectives being addressed. All models basically
provide the closure profile for these forces, support units and resupply given these
transportation assets (forward problem). :

This question may be appropriate for deliberate planning or execution planning analy-
sis, but it does not directly address the concerns of how many transportation assets are
required (important for resource requirement studies).

Strategic mobility analysis that addresses transportation asset requirements seeks the
best mix of transportation assets for achieving a desired closure profile for a given set of
forces, support units and resupply (backward problem). The unknown values in require-
ments determination are required inputs to existing models.

At present, therefore, analysis cannot directly answer the question of how many of each
type of transportation assets are required. They can only obtain an approximate solution by
multiple runs and trial and error.

The Solution Is Not Optimal: This laborious process, more art than science, certainly
does not provide “optimal” answers. In fact, a good deal of expertise is typically needed to
develop even a “good” answer to transportation force structure issues. This suggests that a
different modeling approach is warranted, one that moves away from simulations, or at
Jeast from current simulation methods, to an approach that directly addresses force require-
ments questions.

' Our mobility analysis system, NETO, accepts the same input file information as the
above models; however, it differs from them and other newer approaches (such as ADANS)
in its optimization and analysis capabilities. For example, all other models are geared
toward addressing the capability assessment (the forward problem) while unabie to solve
the optimal requirements studies (the backward problem); NETO is capable of solving both
forward and backward problems. In the remainder of this report we focus precisely on the
commenly ignored optimal irement studies problem. In what follows, we discuss our
approach to address the above limitations and to solve the optimal requirement studies
problem without the need for repeated runs. '
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2. NETWORK OPTIMIZATION MOBILITY ANALYSIS SYSTEM

NETO consists of two interrelated components: a network optimization engine with time
window-constrained routing and scheduling based on integer and combinatorial optimization
methodology; and an analysis system with a information management system built upon
RDBMS and multimedia technology. RDBMS is not presented here; it falls outside of the focus
of this report. In this section, we will give an overview of the NETO system architecture,
describe the underlying labeled digraph and PDPTW. More detailed issues as well as the for-
ward problem, selection of cutting plane, column generation, column elimination, numerical
results and comparisons are reported in [6).

NETO SYSTEM ARCHITECTURE

The diagram and system hierarchy of NETO system architecture are shown in Figure
2-1. The input information is the same as the original input information {cf. Figure 1-1),
except that it might come from a database system. We will substitute the original simulation
process with our optimization system.
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Figure 2-1. NETO System Architecture
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NETO SYSTEM COMPONENTS

The functions of the various components are described as follows:

Operations Network: The Operations Network is the original mobility operation informa-
tion represented in the form of transportation network consisting of all relevant data, such as
air bases, seaports, air routes, sea routes, onloads, offloads, enroutes, cargoes, transportation
vehicles, weather, scenario, movement requirements, logistics factors, and so forth. The
operations network is more than just a geographic network such as a map; it is a model of
the concept of operations, a database of the operation information.

Optimization Network G(N,A): The Optimization Network is the Operations Network
represented in the form of a labeled digraph suitable for mathematical optimization purposes.
It has four types of nodes: starting nodes S, terminating nodes T, pickup nodes P'and deliv-
ery nodes P P" and P~ forms a complete digraph P*x P-. For S arcs only go from 5 toP. ForT

* arcs only go from P~ to T. Denote P=P"UF", N=SUPUT, and A=S5xP P xP'UPxT. Then we
can write the digraph as G(N.A). '

In the mobility analysis system, the set of nodes 5 could be the home depots. The set of
nodes T could correspond to the recovery bases. F* depicts the onload bases of require-
ments and P~ describes their offload bases. A node in the optimization network may corre-
spond to many physical nodes in the operations network or vice versa; an arc in the
optimization network may correspond to several arcs/paths in the operations network and
vice versa. The labels contain various relevant information derived from the operations
network. Among these data are the cost of arc (i), time window constraints {a,b],[a.b,]
(time intervals during which service is required; “service” meaning either pickup or deliv-
erv), the physical nodes that make up the arc (i), etc. Some of the variables used in the

optimization network are: :
: load vector{vohume, weight...} of cargo i at node !
{a,b): pickup time window at node i for movement/cargo
(apol: time window for vehicle leaving the depot 5
(g1 bzm):  time window for vehicle returning to the depot T
D: capacity of vehicle (load weight limit, volume,...)
b travel time from nodeie Ntonodeje N
Si_ service time(pickup time or delivery time) at node (€ N
Y: the total load on the vehicle just after it leaves nodeie N
T: time of start service atnodeie€ N
Ty arrival time at node { or time vehicle leaves the depot 5
Topett time vehicle returns to the depot T
RT: feasible route defining formulation

A complete list of terminology, definitions, notation, and symbols is given in Appendix
A at the end of this report. If the labels which store the transformed mobility information are
oriented, all mobility analysis will resuit in the same kind of optimization network.
Therefore if labels are not considered, the optimization network G(N,A) is a topological rep-
resentation of the mobility system. An operations network is converted to an optimization
network through Network Construction.

Network Construction: This transforms an operations network into an optimization net-
work, taking into consideration such factors as routes, enroutes, cargoes, fuel, and other
information in association with the operations network. There are basicaily two tasks: build-
ing up the digraph topology G and computing the labels. For example, to construct the arc
from a pickup nodei € P” to a delivery node n+i € P, we may select the shortest path P with
the maximum length of any segment in P not exceeding a certain quantity in the operations
network. This could mean that a certain type of aircraft can make a sustained flight with
supported available refueling along the route.
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Reduced Optimization Network: The Reduced Optimization Network is an Optimization
Network reconfigured by tightening some excessively wide time windows and by eliminat-
ing as many as possible inadmissible arcs. By excessively wide time windows, we mean
those time windows that can be narrowed without changing the problem under considera-
tion. By an inadmissible arc we mean arcs which violate the constraints imposed upon the
mobility system, such as time window and vehicle capacity, etc. PDPTW [16,17,20,21]} is the
underlying model for the optimization. The PDPTW model represents a vehicie routing and
scheduling problem where cargoes are to be picked up in specified origins (sources) within
given pickup time periods and to be delivered to desired destinations (sinks) within given
delivery time periods. ‘

The PDPTW was first formulated based on a vehicle flow/multicommodity flow-based
nonlinear model (cf. [6]) and then reformulated into set-partitioning formulation and solved
by the Column Generation Column Elimination Algorithm (SP-CGCE). The Column
Generation Technique is based on the primal-simpiex method to efficiently solve LP prob-
lems with a very large number of columns. It decomposes the original LP program into a
master problem and a subprobiem. In our research we have decomposed the linear relax-
ation of the set partitioning formulation of the PDPTW into a shortest-path subproblem with
constraints. After the LP optimal is obtained by the column generation process, the Column
Elimination Technique has been employed to obtain integer optimality.

The optimization result has been utilized for various output analysis purposes, accord-
ing to the specific needs of the operation. In particular, the output data have been stored in
the database system for further analysis.

3. SP-CGCE SOLUTION ALGORITHM AND PERFORMANCE

The use of a set-partitioning formulation, with the column generation scheme for solv-
ing vehicle routing problem (VRP) and PDPTW problems has recently become more fre-
quent [11-21}. This is mainly because good alternative formulations for PDPTW problems
are not known and the linear programming relaxation of the set partitioning formulation
often yields a strong bound.

Other algorithms for solving PDPTW problems found in the literature [17,20] generally
take the following set-partitioning formulation, column generation, branch-and-bound
approach: these algorithms use a set-partitioning formulation and solve the relaxed set-
partitioning problem by column generation, where columns are generated when necessary
by solving a constrained Shortest Path Problem, Often the linear optimal solution is also
an integer solution. If it is not, the linear optimal solution offers a good lower bound for
the original set-partitioning problem, especially if some heuristic cutting planes are used.
Then this scheme resorts to branch-and-bound to find the integer optimal, Since the origi-
nal integer formulation is a set-partitioning formulation, branch-and-bound can not take
place on the decision variables directly, but rather, on the arcs/paths in the network. This
creates a tremendous number of subprobiems/new nodes in the branch-and-bound
process and each of them corresponds to a subgraph of the original graph G(N,A). Again,
column generation with the shortest path problem can be used to solve the subprobiem on
the subgraph to linear optimality in order to get the lower bound for a further branch-and-
bound process.

In set-partitioning literature, the concept of identifying columns that would not con-
tribute to the optimal solution and thus be excluded from the optimizing process was first

mentioned in 1963 by Balinski (22]. Agarwal [23] applied this in 1989 for a VRP problem -

based on a well known result in combinatorial optimization by Pierce in 1973, [24]; we call
this general concept column elimination.
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In this work, the column generation technique is used to soive the linear relaxation of the
SP to its linear optimal. The generating algorithm of the column generation is a constrained
shortest path problem which is solved by dynamic programming. Based on the information
of the reduced costs of the SP linear relaxation and its linear optimal value and an integer
optimal upper bound, a column elimination technique is developed to eliminate many non-
promising columns, thus reducing the size of the SP. The reduced SP then can be solved
directly. By combining column generation with column elimination, we developed a solution
algorithm for NETO; furthermore, it is mathematically guaranteed that the reduced SP will
yield the integer optimal solution for the original problem (cf. section 3 of chapter 4 in (6])-
The set-partitioning formulation of NETO is provided in Appendix B of this report. In subsec-
tion 3.1 we present a performance comparison of our SP-CGCE algorithm and previously
published results.

COMPARISON OF PERFORMANCE BETWEEN SP-CGCE AND OTHER
ALGORITHMS

The computational experiment was conducted on 99 different test problems; the prob-
lem size varied from ten pickup nodes to 120 pickup nodes, the number of feasible arcs
ranged from 180 to 23,198, the feasible routes range from 16 to 32,375. Numerical results (6]
indicate robust performance of the algorithm, especially the column elimination technique
which generaily reduces the SP problem size by an order of 2. The test results indicate an at
least 100% speed increase over currently available column generation, branch-and-bound
scheme; this is due to the effectiveness of the column elimination process. Additionally, in
return for the sacrifice of some optimality , larger and more difficult problems can be solved
several times faster. The gap between the LP bound and the integer optimum for the 99
problems tested range from 0% to 3.7% with an average of 0.1%.

As discussed earlier, most other algorithms for solving the PDPTW problem solve the
LP to optimality and then utilize a branch-and-bound scheme to find the integer optimum.
Since some of the subproblems on the subgraph can be almost as difficuit as the original
graph, solving one such subproblem might as well double the total solution time, and solv-
ing two might triple the time. This is evident in the numerical resuits given by Dumas(17] as
recompiled here in Table 3-1.

Table 3-1. Time Required to Solve LP and ILP to Optimality [17)

Probiem Al9 | A30 | B30 | C20{ C30 | D40 | D50 | D55
Z(LP) cpu tme(sec) | 92 47 112 | 28 | 111 66 95 ] 204
Z(ILP) cpu tme(sec) | 95 51 | 114 | 51 | 169 | 172 } 215 | 313

In the above table, Z(LP) cpu time is the time required to solve LP relaxation and to
obtain the LP optimal solution Z(LP) via column generation. Z(ILP) cpu time is the time
required to solve the Integer Linear Program optimal solution Z(ILP) by branch-and-bound
using the LP optimal as a lower bound. The average ratio of Z(ILP) cpu time over Z(LP) cpu
time is 1.536.

The SP-CGCE algorithm developed for NETO, however, does not use branch-and-
bound to solve the problem to integer optimality after the LP optimal is obtained. It uses
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column elimination. From the computational results presented previously in this report and
in [6], some of which are recompiled here in Table 3-2, we can see that the column elimina-
tion (TCE) is a fraction of the time required to solve the LP optimal (TRts+TCG). The only
overhead involved is Tzu, the time required to find an upper bound of the integer problem
{ASP), which is also a fraction of the time needed to solve the LP optimal.

Table 3-2. Time Required to Solve LP and ILP Optimal(SP-CGCE)

Problem - A36 B45 D60 .| D70 E40 E45
Z(LP) cpu time(sec) | 257 1420 43 | 182 80 404
Z(ILP) cpu time(sec) 0 1 2 1 6 3

Z(LP) cpu time= TRzs+TCG; (ILP) cpu time=TZu+TCE

In conclusion, the numerical experiments show that the column generation/
column elimination algorithm is indeed a powerful, flexible, stable and efficient one.
The column elimination procedure, in particular, is remarkably efficient. For more
details on performance evaluation and theoretical issues such as network reduction
(time-window tightening, arc elimination) and SP-CGCE algorithm development as
well as an up-to-date literature review of PDEFTW and related subjects, we refer the
reader to {6].

4. NETO SYSTEM IMPLEMENTATIUN AND DEMONSTRATION

The first part of this section discusses the implementation of NETO, and the second part
provides an example for solution of the backward probiem.

4.1 SYSTEM IMPLEMENTATION

To test the SP-CGCE algorithm and demonstrate the new model NETO, a prototype
system is implemented on a SunSparc Server 670MP workstation in a total 8181 lines of
source code in C. The Linear Programming and Integer Programming solver for the
SP-CGCE algorithm is built upon Cplex 3.0 Callable Library.® The user interface is
implemented using Xt Tool Kit Intrinsics and Xlib. Technically speaking, the GUI inter-
face class hierarchy based on object oriented programming is as in Figure 4.1.

In Figure 4.1 the “inputButton” controls the user input interface; the
“outputButton” takes care of the output of optimization results and statistics; the
“generateButton” generates a test problem; the “optimizeButton” activates the column
generation column elimination program to solve the problem; the mapBox Widget
Class allows a programmer to draw geographic maps in an X window. It is designed
to give the application programmer the ability to work entirely in world (latitude,
longitude) coordinates and frees him/her from thinking about the projection, scale, and
display of the data. It has a ‘zoom box’ built in. The user can drag out a zoom box with
the first mouse button (changeable through added translations). He/she can then zoom
by clicking the first button within the zoom box, or cancel it by clicking outside its
boundaries.

L

-
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portholeWidgetClass | porthole |

mapBoxWidgetClass

Figure 4.1 X GUI Interface Class Hierarchy
4.2 SYSTEM DEMONSTRATION

An example of the optimal requirement studies (the backward problem) is given in this
sub~-section. Five additional examples are given in (6] as demonstrations of the NETO and
the SP-CGCE algorithm. In (6], the first example is a backward requirement analysis type
problem; the second is a forward capability analysis-type problem; the third is a full-load
problem; the fourth is a multidepot problem; and the last is a split type of problem.

4.9.1 EXAMPLE: OPTIMAL REQUIREMENTS STUDIES (BACKWARD
PROBLEM)

In this example the problem is to find how many aircraft are necessary to move cargoes
to the specified destination, while satisfying the closure schedule specified by the TPFDD.
An illustration is provided of how the system and the algorithm function.

4.2.1.1 INPUT AND PREPROCESSING

Raw input information stored in the database system will first be preprocessed by the
tasks listed previously in this report, such as by merging files and aggregating records into a
correct and efficient form. Here we start from a regular and simpiified TPFDD format and
proceed to the optimization process described below.

4.2.1.2 OPTIMIZATION

Operations Network: The operations network constitutes the original mobility operation
information represented in a form of transportation network consisting of all relevant data,
such as air bases, seaports, air routes, sea routes, onloads, offloads, enroutes, cargoes, trans-
portation vehicles, weather, scenarios, movement requirements, logistics factors, etc. The
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operations network in this example is outlined in terms of cargoes, transportation resource
and operation scenarios:

Cargo: Cargo information described by the simplified TPFDD as movement requirement is
specified in Table 4-1. For a graphical representation of the TPFDD, please refer to Figure 4-2.

Table 41 TPFDD for the Backward Problem

APOE APQOD EAD(min) | LAD(min) | TONNAGE
ALLEGHENY CO MYRTLE BEACH AFB 303 1685 256
HAWTHORNE MUNI GADSDEN MUNI AFB j44 1825 267
DULUTH INT MYRTLE BEACH AFB 636 2851 138
Transportation Resource:

* Aircraft Capacity: 500 tons

* Aircraft Speed: 120 mph.

* Aircraft Berth:

* Starting Depot: SAN FRANCISCO INTL.
* Returning Depot: SAN FRANCISCO INTL.

For simplicity, cargo loading/unloading time is converted into vehicle speed thus the
service time s is set to zero. Aircraft capacities and cargoes are modeled here with only one
dimension (weight); other dimensions such as load size and passenger/cargo type can also
be incorporated.

Figure 4.2 Graphical Representation of the TPFDD in the Backward Probiem
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Table 42 Operations Network Information

2. Distance Among Bases: Great Circle Distance

AIR BASES SAN FRANC |ALLEGHE{HAWTHOR |DULUT| MYRTLE GADSDEN
ISCOINT NYCO | NEMUNL | HINT | BEACHAFB | MUNIAFB
SAN FRANCISCO INT 0 X282 347 1637 2451 2038
ALLEGHENYCO 282 0 2165 764 473 581
‘HAWTHORNE MUNIL 347 2165 0 1632 260 1842
DULUTH INT 1657 764 1632 0 1151 947
MYRTLE BEACH AFB 2451 473 2269 1151 0 431
GADSDEN MUNI AFB 2038 581 1342 947 431 0

b. Flying Time Among Bases: Using tfi.{l= GCD(i.j[/AifcraftSpeed

AIR BASES SAN FRANC |ALLEGHE{HAWTHOR [DULUT| MYRTLE GADSDEN

ISCOINT NYCO | NEMUNI | HINT | BEACHAFB | MUNLAFB
SAN FRANCISCO INT 0 1141 173 828 1270 1019
ALLEGHENYCO 1141 0 1082 382 236 0
HAWTHORNE MUNI 173 1082 ) 316 1134 921
DULUTH INT 328 382 316 0 575 473
MYRTLE BEACH AFB 1270 NA 1134 31 9 215

GADSDEN MUNT AFB 1019 290 921 473 215 0
Operation Scenarios:

* Operation Time: Starting at 00.00 hr, ending at 48:00 hr (i.e. Time Duration = 48.00 hrs)

¢ Infrastructure:
¢ Availability of Aircraft: to be decided optimally
*» Transportation Network /Operations Network: Table 4-2.

Network Construction & Optimization Network: The network construction trans-
forms the above operations network into the optimization network , taking into considera-
tion factors such as routes, enroutes, cargoes, fuel and other information in assodation with
the operations network. TPFDD and transportation network information is transformed
into the labeled digraph G(N,A). After the network construction process, the graph and

labels information are shown in Table 4-3.
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Table 4-3. Optimization Network Information

a. Node N, labels a[i], bfi] and d{i] in G(N, A}

Node N Q 1 2 3 -1 -2 -3 7

Air Base | SANFR | ALLEGH | HAWTHO | DULUTH | MYRTLE | GADSDE | MYRTLE | SANFR
afi] ] 303 144 636 0 0 0 0 -
bfi] 2880 2880 2880 2880 1685 1825 2851 2880
dli] 0 256 267 138 -256 =267 -138 0

b. Cost ¢; for G(N.A)

Node 0 1 2 3 -i -2 -3 7
o 0 k1r] 1787 3097 NA NA NA NA
1 NA 0 2165 764 473 381 473 NA
NA 2165 0 1632 ol 1842 2269 NA
3 NA 764 1632 0 1151 947 1151 NA
-1 NA NA 269 1151 ) 431 0 2451
-2 NA 581 NA 947 431 0 431 2038
-3 NA 473 2265 NA 0 431 0 2451
7 NA NA NA NA NA NA NA . 0

¢: Flying Time t; for G(N,A)

Node 0 1 2 3 4 -1 -2 -3 7
0 0 1141 173 228 NA NA NA NA
1 NA 0 1082 382 136 20 6 NA
2 NA 1082 0 816 1134 921 1134 NA
3 NA 382 316 2 515 473 575 NA
-1 NA NA 1134 575 0 215 0 1225
-2 NA 290 NA 473 215 0 215 1019
-3 NA 236 1134 NA 0 215 0 1225
7 NA NA NA NA NA NA NA 0

Please note that -i is equivalent to n+i. So either (,n+1) or (i) denote the same pickup-
delivery pair. NA means not applicable.

To construct the optimization network, two tasks arise: building up the digraph topolo-
gy G, and computing the labels. For simplicity, we take the direct physical route (ij) as the
arc (i,/) of G(N,A). With the arcs available, other parts of the network can be built very easily.
In particular, the cost of arc (i,)) is defined as :

_ GCD(Lj)v é’ i=0

Y |\E+GCDG.j), ifi=0
utilizing a vehicle. In reality, arc construction is a complicated procedure which can be done
in various ways according to the actual operational situation. Information concerning crew
scheduling, traffic congestion, aircraft mechanical limitations, weather situation, closed air
bases, hostile regions and so forth might all be included in the optimization network con-
struction process. For example, to construct the arc from a pickup node i ¢ P” to a delivery
node n+i € P, we may select the shortest path P with the maximum length of any segment
in path P not exceeding certain number in the operations network, which may mean that a
certain type of aircraft can make a sustained flight with supported available refueling along
the route.

, and K=1441, here K represents the “fixed cost” of
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Network Reduction & Reduced Optimization Network: The above optimization net-
work can be further reconfigured by tightening some time windows and some inadmissible
arcs through the process of network reduction, which reduces the size of the problem. There
are nine rules for time window tightening and inadmissible arc elimination (cf. Chapter 4 of
[6]); these rules identify infeasible/inadmissible arcs and reduce the network size. Table 4~4
shows the result of network reduction.

Table 44 Reduced Optimization Network Information

a: Node, labels afi], b(i] and d[i]

Node 0 1 2 3 -1 -2 -3 7
‘Air Base | SANFR | ALLEGH | HAWTHO | DULUTH | MYRTLE | GADSDE MYRTLE | SANFR
afij 0 1141 173 328 1377 1094 1403 0
bfi} 2880 1419 904 1080 1655 1825 1655 2830
dfi] g 256 267 138 -236 -267 -138 0

b. Cost ¢; for G(N,A)

Node S l 2 3 -1 -2 -3 T
S ) 2 L1787 3097 NA NA NA NA
1 NA 0 - - 4713 581 473 NA
2 NA 2163 0 1632 - 1842 - NA
3 NA 764 - 0 - 947 1151 NA
-1 NA NA - - 0 431 0 2451
-2 NA 581 NA - 431 0 431 2038
-3 NA - - NA 0 431 0 2451
T NA NA NA NA NA NA NA 0

Note: “-” entry in above table means the arc is eliminated.

Comparing 4-3(a) with 4-4(a), it can be seen that 6 out of 8 time windows are tightened,
e.g. the original time-window in Table 4-3(a) for node 1 was {303, 2880}, in the reduced ver-
sion it has been tightened to (1141, 1419}; Comparing 4-3(b) with 4-4(b), it can be seen that 11
out of 33 arcs in the original optimization network are eliminated, e.g. in the entry for the arc
connecting node 1 to node 2 has been eliminated. These window tightening and arc reduc-
tions result in a reduced network with less computational complexity.

PDPTW & SP-CGCE OPTIMIZATION:

With GN.A) available, the SP formulation for the PDPTW problem can be carried out as dis-
cussed in Appendix B. The SP formulation is an implicit one, because it offers the structure, but
does not explicitly express the parameter values. These values, such as the cost coefficients and
columns, will be generated along with the solution of the formulation. The Column Generation
partofmeSPCGCEalgoﬁ&msolvesﬂleLPreIaxationofﬁteSPformulaﬁonhoLPoptimalafter
generating 4 columns (Table 4-5). During the first iteration of column generation, the column
which is generated corresponds to the feasible route of 03,1317 {also see Table 4-3):

1) the vehicle leaves its home base at node 0 (referring to SAN FR),

2) picks up cargo at node 3 (referring to DULUTH, picking up 138 tons there),

3) the vehicle then goes to node 1 (referring to ALLEGH, picking up 256 tons),

4) the vehicle delivers the cargo from DULUTH (labeled node “3”) to node “-3" which

is the drop-off at MYRTLE,
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5) the vehicle then delivers the cargo from ALLEGH (labeled node “1”) to node “-1”

which here also refers to MYRTLE.

The reduced cost corresponding to this column/route is -6560. By column generation
technique, we know it is the minimum reduced cost among all other columns which are not
in the base of the simplex algorithm. Since this is a negative value, the LP solution is not yet
an optimum one; therefore, more column generations are needed. As shown in Table 4-5,

after the 4th column generation iteration, the optimal solution is obtained.

Table 4-5 Column Generation Process

Column  (min Reduced Cost| Carresponding Route LP Optimal? Add This Coiumn?
Generations
1st -6560 (0.3.1,-3.-1.7) N Y
2nd -5179 0.2.-2.1.-1.7) N Y
3rd -3946 (0.2.3.-3.-2.7) N Y
4t 0 All 7 Feasible Routes Y N

The Column Elimination part of the algorithm solves the SP problem to integer optimal

using 5 out 7 total feasible columns/ routes (Table 4-6), i.e. two columns are eliminated.

Table 46 Column Elimination Process

Route | Reduced |Zupper -Zlower| Eliminated? The Path
Cont .

1 3206 1973 Y O(T:0), 1(T:1141). -1(T:137T7), (T:26 02)

2 1973 1973 N O(T:0), 2(T:173), -2(T:1004), I(T:21] 3)

3 3354 1973 Y O(T:0), 3(T:828), -3(T:1403), 7(T:262 R)

4 |50000000 1973 N* WT:0), 2(T:173), -2(T:1004), 1(T :1384), -1(T:1620), T(T:2845)

5 0 1973 N O(T:0). 3(T:828), LT:1210}, -3(T:1446.-1(T:1446). (T:2671)

[ 0 1973 N OCT:0), 2(T:173), 3(T-989), -3(T:1564), -2(T:1779), HT:2798)

7 0 1973 N O(T:0), 3(T:8328), 1(T:1210), -1(T:14486). -3 (T:1446), T(T2671)

8 OCT:0), 2(T:173), 3(T:989), 1(T:1371), -i(T:1607), -}(T:1607), -
AT:1822), T(T:2841)

9 oot PD PTW feasibic O(T:0), 2T:173), 1(T:1255), -1(T:1491), -2AT:1706), AT2T25)

10 ‘ OCT:0), 2(T:173), 3(T:989), L(T:1371), -H(T:1607), -1(T:1607), -
AT:1822), 7(T-2841)

*The 50000000 value is an internal flag of the implementation for code optimization

The optimization statistics and optimal solution are shown in Tabie 4-7, from which we
know that the minimum number of vehicles used is 2 and the optimal routes and schedule
are O(T: 0}, 2(T:173), -2(T:1094), 7(T:2113) and O(T: 0), 3(T: 828), 1(T:1210), -1(T:1446),

-3(T:1446), 7(T:2671).

Military Operations Research, Winter 1996




MODELING AND OPTIMIZATION OF MOBILITY ANALYSIS

Table 4-7 Optimization Results

a. Optimization Statistics

Optimal Vaiues | Vehicles Needed | Pickup-Delivery Pair Nodes Arcs F_Arcs
12452 2 3 i 33 pal
FRts ColumGens _LPOptimal Zupper RisElimd Trotal
7 4 10479 12452 2 0

b. Optimal Routing & Scheduling
Binary | Route Cost [Routing & Scheduiing [oformation Format: Node{T:Armivat/Deparmre Time)

Variable
xl 5667 O(T: O, AT:173), -2T:1094), 7(T:2113)
. 26 6785 O(T: 0), AT: 328), L(T:1210), -1(T:1446), -H(T:1446), NT:2671)

4.2.1.3 POSTPROCESSING AND CUTPUT

Depending on the situation, various postprocessings could be done and user-friendly
output could be generated. Here, we will give the GUI display of the optimal routes in
Figure 4.3, the throughput in Figure 44, and the Vehicle-in-Use Information in Figure 4.5.

Figure 4.3 Optimal Routing in the Requirements Studies Example
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Figure 45 Vehicles-in-Use

9. DISCUSSION OF RELATED ISSUES AND FUTURE WORK

Although the focus of this report has been our solution to the requirement studies prob- i
lem, the above implemented model and solution scheme is powerful, flexible and extendible .
in dealing with many other real world issues. Here we mention, with some modification, -
those problems addressed by this approach and additional issues for further work.

1) Vehicle Numbers: Consideration of the number of vehicles is easily incorporated in this
approach. For the minimum number of vehicles probiem, what is needed is to take.

0 ifi=0"
the constraint: ) x, =m must be inciuded. For problems with 2 maximum number m
ref)

. .—.{K fi=0 For problems that are concerned with ar exact aumber m of vehicies,
vehicles the constraint: Y, x, < m must be included.
rQ
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2) Multi-depot, Nonhomogenous-vehicle: This approach can easily be extended to a
multi-depot, nonhomogenous-vehicle situation in which the feasible routes would be
obtained by applying the Constrained Shortest Path Algorithm to different depots and
types of vehicles. The computation time/complexity increases linearly.

3) General VRP Problems: This scheme can solve general VRP problems, pickup only
problem, delivery only problem, spiit, full load, with or without time windows. The
only major modification is the constrained shortest path probiem. :

4) Forward Problem: The approach can also address the aforementioned forward prob-
lem. The forward probiem can be formulated similarly by incorporating the penaity
term T, .4, e P into the cost coefficient ¢

5) Soft Time Windows: The approach can also address the so called soft time window
problem. The penaities will be incorporated into the cost coefficient ¢, to include a
route with violated time windows as a feasibie route.

6) Larger Problems: The algorithm can be tailored to solve even larger problems by sac-
rificing optimality and settling for a sub-optimal solution. One way of doing this is to
first divide the original problem into subproblems using the concept of clustering,
and then use this scheme to solve each subproblem to optimality. It is also possibie to
not require optimality in the constrained shortest path and column elimination aigo-
rithm. From another point of view, a semantic control paradigm can be empioyed to
deal with larger problems in which the higher and intelligent layer of the system will
identify the probiem situation and transfer control accordingly to the lower and actu-
ating layer of the system which in our case would be the PDPTW algorithm.

7) Full Load and Split Problem: By adding the full load requirement into the con-
strained shortest path problem, the algorithm solves the full load problem; by assign-
ing different nodes to the split loads, it solves the split problem. Also, the algorithm is
easily adapted to deal with regular routing problems, pickup problems, delivery
problemns and TSP problems. Of course, it performs better with problems which are
more tightly constrained.

The objective function is flexible, Le. various objective functions can be included. As

mentioned above, an objective function to address the forward problem, the backward prob-
lem, and soft time windows can be included in the scheme. Other factors, such as travel dis-
tance, travel time, vehicle utilization considerations etc., can also be easily incorporated.

The mobility system is a large-scale and complicated system; in order to address more

realistic and larger probiems in mobility analysis and other large scale transportation sys-
tems, much more research is needed in addition to the work presented in this report. The
following outlines several open problems that need to be addressed:

1) Crew Scheduling: There are regulations/constraints on the working hours of crew
members. The crew scheduling issues can also be incorporated into the scheme. One
way is to do (vehicle) routing first and (crew) scheduling second, in which case cew
scheduling will take place after the vehicle routes are settled. Crew scheduling could
also be done along with feasible route generation, in which case each feasible route
needs to meet crew scheduling constraints.

2) More efficient parallel algorithm development for the constrained SPP problem: The
column generation-column elimination algorithm is efficient in finding the integer
optimal when the relaxed LP optimal is achieved. Unfortunately, solving the con-
strained SPP problem for the column generation process to obtain the LF optimal is
very time-consuming and computer memory-intensive. It is the major bottleneck of
the algorithm; therefore a more efficient algorithm for the constrained SPP problem is
desired. In recognition of the ever-increasing use of parallel computing, parallel algo-
rithm development may be a worthwhile pursuit. The use of parallel algorithms will
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be achievable in the near future since the process for solving the constrained SPP
probiem is based on dynamic programming and has very strong parallelism.

3) Vehicle Concurrence Issues: Vehicles might compete for common resources such as
routes, crew members, air fields etc., which could affect operations. The effects of one
vehicie on another make the system a time-dependent and vehicle-dependent
dynamic system; these issues are not considered here. The set-partitioning formula-
tion, column-generation solution approach might be inherently weak in modeling
these factors. One possible way of handling this is by a route-first and concurrence-
check-second approach. Since the optimal solution is often not unique, the check can
be first conducted for all optimal solutions. If none satisfies the concurrence check
criteria, certain modifications need to be performed.

4) Nonlinear Loading Algorithm: In this report, a multidimensional linear loading algo-
rithm is used (constraint B-5 for load progression in the formulation given in
Appendix B). In more complicated cases, nonlinear loading may be involved, and
issues concerning nonlinear loading algorithms coupled with the optimality analysis
should be expiored. Generally, any loading algorithm could replace the existing load-
ing in the NETO as long as it can be incorporated in the constrained shortest path
problem.

5) Dynamic Routing and Scheduling: The situation studied in this paper is basically a static
routing and scheduling problem with time windows and capacity constraints. The
movement requirement is known in advance. In some situations, the movement require-
ment is dynamic and the routing and scheduling should be performed continuously.

6) Probabilistic Considerations: In this report we have assumed that the parameters of
the operation, including the network, resources, etc. are all deterministic. But in real
situations, various uncertainties could be involved in many aspects of the problem;
therefore probabilistic studies are useful in addressing more realistic scenarios.

6. CONCLUSION

This report is based on a doctoral dissertation by the first author [6]; it is the first attempt
to use column generation-column elimination scheme to solve VRP problems in general and
VRPTW and PDPTW problems in particular; it is also the first attempt to model and solve
the mobility analysis system problems using network optimization with time window
constrained routing and scheduling.

The new model (NETO) not only offers optimal solutions but also solves both the for-
ward problem and the backward problem. Above all, it is flexible and can be extended to
include many additional practical and operational constraints and considerations. The
SP-CGCE algorithm is an efficient and competitive approach to solve practical vehicle rout-
ing and scheduling problems. The computational results presented briefly in section 3.3 of
this report indicate robust performance for the algorithm. All these characteristics discussed
above make NETO, with the SP-CGCE aigorithm powerful, fiexible and practical.

In summary a new mobility analysis model named NETO [6] is proposed to address
various limitations of the existing ones. The new model consists of a network optimization
engine with time window constrained routing and scheduling that is based on integer and
combinatorial optimization methodology, and an analysis system with a management infor-
mation system built upon RDBMS and multimedia technology. It is our belief that NETO

with the SP-CGCE algorithm can be, should be and will be utilized to solve practical mobili-

ty analysis problems as well as other transportation system related problems.
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APPENDIX A: NOTATIONS AND DEFINITIONS

AMC:
APOE:
APOD:
CINC:
COA:
CONUS:

PDPTW:
RDBMS
RIMS:
SP-CGCE:
SPP:
TPFDD:
TSP:

R%:

Air Mobility Command

Aerial Port of Embarkation

Aerial Port of Debarkation

Commander-in-chief

Courses of Action

Continental United States

Earliest Available Date

Flow Generator

Great Circle Distance

Graphical User Interface

Integer Programming

Latest Arrival Date

Linear Programming

Mobility Analysis Support System

Mobility Analysis Simulation System

Model for Intertheater Deployment By Air and Sea
Mixed Integer Programming *

Management Information System

Military Sealift Command ‘

Network Optimization Mobility Analysis System
Office of the Secretary of Defense

Pickup and Delivery Problem with Time Window Constraint
Relational Database Management System

Revised Intertheater Mobility Study
Set-partitioning Formulation , Column Generation Column Elimination
Shortest Path Problem

Time Phased Force Deployment Data

Traveling Salesman Probiem

Vehicle Routing and Scheduling Problem

Vehicle Routing and Scheduling Problem with Time Window Constraint
n dimensional real vector space
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G(N,A):

Page 102

2 set of non-negative integral a-dimensional vector space

a 3¢t of non-negative binary n-dimensional vector space

pickup node set, P =(L2,...,n}. The cormesponding delivery node to i€ P* is
n+i, also referred to as i

delivery node set, P~ ={n+Ln+2,...,20} (-1, -2, ... -n}

operation node set, P= P* U P”. P includes all piciup and defivery nodes

Starting node set from which vehicles departure. For single depot case, 5= {0}. § is
also used for the space {0,1)2 |

Terminating node set 1o which vehicles renum. For single depot case T={2n+1}

all nodes of the optmization network, N = SUPUT =(0, I, ..., n, n+l, .., 2n
2N=1}

all arcs of the optimization network, A=SXP ' UP X P Ul xT

the ariginal underlying graph of the optimization network

a feasible route in G(N, A) . '

or N, A). the set of all feasible routes in G(N, A). Q= {p_}

the cardinality of

the basic variables in the simpiex method

the non-basic variabies

the cost coefficient comresponding 10 X,

the coefficient corresponding 0 X,y

the basis in the simpiex method

the non-basic columns.

ie. {p,:8, & B}, the sct of the feasible routes that correspond t the columns in the

“feasible base B
column coefficient, of the set panitioning formulation, comrespouding o feasible route

Q if node{ is not on route r
,where §. = e P*, | O
Pr. where 8 {1 nodeiisonromer - refsip; e
0 if feasibie route r is not selected in the solution
X, = ) . . . . r={rip, € Q}
1 if feasible route r is selected in the solution
binary variable
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SP: the original master problem with set partition formolation

RSP: the linear relaxadon of SP

ASP: the angmented set partiion master problem

RASP: the linear relaxation of ASP

. the optimal solution variable for RSP or RASP

x;: a feasible soludon for SP (integer solution)

Xy x; where (i, /)€ A is the vehicle flow variab les of the feasible route P, €L

1 if feasible route p, goes direcdy from i to j
*i =10 if feasible route p, does not go directly form i to

Cy* the cost of arc (J, f)

C;+ artificial cost of arc (i, /) for the shortest path problem

C,: the costof routss P.:C, = z:::ixa

[L¥) 23

C,: reduced cost E, = ¢. — %8, , where T is the dual variables vecior/simpiex muitiplier
the original grobiem space, S = {0, 1), § is also used for the starting nodes

Sgt ie. Spep. orsw.mmbmmof'ﬁsporm.szeﬁf‘mﬁsmumr
relaxation of 3

d: load vector(volume, weight...) of cargo { at node i

[a,.5,]: pickup time window at nods i for movement/cargo i

- time window for vehicle leaving the depot S

[@3paisDrpny]:  time window for vehicle returning to the depot T

D: capacity of vehicie(load weight limit, volume,...)

e trave! time from sode § € N onode j& N

5;: service time(pickup time or delivery time) atnode i € N

z the total load on the vehicle just after it leaves node { € N
T; time of start service atnode i € N

1;: arrival time at pode i ar time vehicle leaves the depot §

Ton time vehicle returns to the depot T

RT: feasible route defining formulation
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RTL: columns to be generated each time for the column generation process
37(N: the set of nodss that are connected 10 node j
p(D: the @™ route in all routes that starts at S and ends at J with k arcs
P*(j): the set of all routes that startat S and end at j with k ares, ie. P4(7) =] pX (/)
k: () the cost of route P ()
T (): avival time atnode j of route p? ()
i?(j): vehicle load at node j along soute p2 (/)
APPENDIX B: SET PARTITIONING FORMULATION OF THE PDPTW
B.1 Route Defining Formulation
The PDPTW problem is formulated as a set-partitioning model; the formulation is based on
the concept of feasible routes:

A feasible route p,in G(N,A) is a non-cyclic path that originates from S and terminates at T,
while satisfying pairing constraints, precedence constraints, capacity constraints and time
window constraints. Introducing binary route flow variable xyas

{1 if the feasibie route r goes direcdy from i ©o j

. : . . LDeA.
0 if the feasible route r does not go directly form i to |
Then P, can be defined as follows:
Ex,)-—z.‘:jm,-=0. ieP" (B-1) (pairing constraints)
&N jeN
L+5+5pi ST, i€P7) (B-2) (precedence constraints)
X =l=T+5+5 T, i,jeP
Rowe: xp;=1=>T+1, ST}, jeP* (B-3) (timne progression)
I,-.h_,_l =1= E+5i+ti.1n+l S Th*l, i,je P
g, ST sbh,ieP
@G SThy<h {B-4) (time window constrains)

G2ei1 S Topiy S By

xy=1=Y+d =Y, icP, jer

x,-,-=l=9f--zj =‘\7j, ieP, jeF (B-5) (load progression)
xoj=1'=az+a}&?j.je}’*

0<YsD, ieP (B-6) (capacity constraine)

In the above formulation, equation (B-1) ensures that both the pickup node i and its corre-
ponding delivery node n+i are on the same route g,; (B-2) ensures that on the route P pick- .
up is performed before delivery; (B-3) represents the time progression in the network, while
(B-4) are time window constraints. Contraints (B-5) express the compatibility requirements
between routes and vehicle loads, while constraints (B-6) are the capacity constraints.
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B-2 Set Partitioning Formulation:
In set-partitioning formulation, the column coefficients 3, in the constraint matrix are
defined by the feasible route p, in G(N,A) in the following way:

B-2 Set Partitioning Formulation:
In set-partitioning formulation, the column coefficients 3, in the constraint marix are defined by the
Jeasible rouse p, in G(N,A) in the following way: ’

0 if node iis not on route p
§5,=[0,],, wheee &, = r P
r =Bl r {1 if node i is on route p, €
Next let's inrodncs the binary decision varible X, :
0 if the feasible route p, is not selected in the solution
x, = . ) \ ) ., refrip, e}
1 if the feasible route p, is selected in the soluuon

and the cost coefficient ¢, associated with x, or within the feasible route p,. Note that X, is defined
through ., and P, isd:ﬁnedmmugnxi.‘nmwcmmdngivemeset«pmﬁdming farmulation for
the PDPTW problem:
z=min ) ¢z,
re)

sP: st 9.8,x. =L ieP*
reid

r, €01}, reQ ie Xes={01
In the above SP formularion, the coiumn coefficients &, and the cost coefficient ¢, are not explicidy
available, They peed to be obtained through comresponding feasible routs p,, which were defined
pmﬁomly.Aﬂczibleobjecﬁwﬁmaimqnbcobmimdbyvnﬁng&emfmmﬂaﬁmofme ¢ 's.In
Kifi=0
particular to solve the requirement studies problem. (if ¢ ={Oif'==0 then the objective is to
i
minimize the aumber of vehicies used. In general, the number of feasibie routes p, and the sumber of
columns 8, in|Q| is buge, making it computationally probibitive w0 enumerate all feasible
routes/columns and solve the SP problem 1o integer optimalicy.
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ENDNOTES
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This work was supported in part by AFOSR under grant number 890158,

A complete list of terminology, definitions, notation, and symbols is given in the
Appendix A at the end of this report.

4 The networks were trained and validated on a declassified TPFDD file from
Operation Just Cause in Panama.
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